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ABSTRACT

COVID-19 is an emerging respiratory infectious disease caused by the coronavirus SARS-CoV-2. It was first reported on in early December
2019 in Wuhan, China and within three months spread as a pandemic around the whole globe. Here, we study macro-epidemiological
patterns along the time course of the COVID-19 pandemic. We compute the distribution of confirmed COVID-19 cases and deaths for
countries worldwide and for counties in the US and show that both distributions follow a truncated power-law over five orders of magnitude.
We are able to explain the origin of this scaling behavior as a dual-scale process: the large-scale spread of the virus between countries and
the small-scale accumulation of case numbers within each country. Assuming exponential growth on both scales, the critical exponent of
the power-law is determined by the ratio of large-scale to small-scale growth rates. We confirm this theory in numerical simulations in a
simple meta-population model, describing the epidemic spread in a network of interconnected countries. Our theory gives a mechanistic
explanation why most COVID-19 cases occurred within a few epicenters, at least in the initial phase of the outbreak. By combining real world
data, modeling, and numerical simulations, we make the case that the distribution of epidemic prevalence might follow universal rules.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013031

In this study, we address one of the striking characteristics of the

COVID-19 pandemic, namely, the huge variation in the num-

ber of cases that have been reported from different parts of the

world. In the first month of the outbreak, some countries, the

so-called “epi-centers” of the pandemics, were already severely

struck by the pandemic, whereas many others at the same time

had just confirmed the first few cases. Similar heterogeneous dis-

tributions occurred on a smaller scale within countries and led to

the paradoxical situation that despite the huge number of infected

persons worldwide, many people (still) experienced a mild num-

ber of cases in their local neighborhood. To quantify this pattern,

we analyze empirical data on the number of confirmed COVID-19

cases and show that the epidemic prevalence is distributed as a

truncated power-law over many orders of magnitude. This indi-

cates that the transition between the few epidemic epi-centers and

the large number of weakly affected regions is scale-free and, thus,

the strong inequality of reported cases is an expression of the fact

that COVID-19 is geographically distributed as a fractal. Even

though there are many factors that potentially are contributing to

this spatial heterogeneity (e.g., idiosyncratic differences in sizes,

geography, mitigation measures, and testing regimes in different

countries), we develop a simple dynamic theory that is able to

explain the reported data and indicates that the emergence of a

power-law distribution is a natural outcome of the spreading pro-

cess itself. Our theory also gives cause for concern: as the fractal

distribution arises only in the initial phase of the pandemic, epi-

demic prevalence patterns might be very different if the pandemic

breaks out again in a second wave after a prolonged lock-down

period.

I. INTRODUCTION

COVID-19 is an emerging infectious disease caused by the
coronavirus SARS-CoV-2. It was first reported on in Hubei, main-
land China on December 31, 2019 and has spread well outside China
in a matter of a few weeks, reaching countries in all parts of the
globe within a time span of three month. As of 29 March 2020,
the disease has arrived in 177 countries, with more than 700 000
confirmed cases and 30 000 deaths worldwide.42 Despite the drastic,
large-scale containment measures implemented in most countries,
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these numbers are rapidly growing every day—posing an unprece-
dented threat to the global health and economy of interconnected
human societies.

One of the most powerful tools to understand the laws of epi-
demic growth is mathematical modeling, going back to Bernoulli’s
work5 on the spread of smallpox in 1760. Epidemiological models
can be roughly divided into two classes. The first class of models
is focused on describing the temporal development of the epidemic
within a localized region or country. These models are often variants
of the well-known susceptible-infected-recovered (SIR) model22,23

and have recently been adapted to the situation of COVID-19,
taking into account non-pharmaceutical interventions (e.g., quar-
antine, hospitalization, and containment policies) and allowing first
predictions of healthcare demand.15,25,26,40

The second class of models is concerned with the geographic
spread of the epidemic around the globe. For these aims, spatially
explicit models have been developed that leverage information on
the topology of transport networks. For example, the global net-
work of cargo ship movements21 was used to model the dispersal
of invasive species.37 Similarly, for infectious diseases, in a pioneer-
ing study, the 2003 spread of SARS in the global aviation network41

was modeled.19 Based on these approaches, conceptual frameworks
have been developed to estimate epidemic arrival times as effective
distances.8,20 At the same time, these models have been refined to
highly detailed simulation frameworks for predicting the spread of
disease and are able to include factors such as vaccination, multiple
susceptibility classes, seasonal forcing, and the stochastic movement
of individual agents.12,43 Reacting rapidly to the emergent pandemic,
spatial epidemiological models have been developed to describe and
anticipate the spread of COVID-19.2,10,16,33 These models allow us
to predict the incidence of the epidemics in a spatial population
through time, permitting to study the impact of travel restrictions
and other control measures.

Despite this theoretical progress, not much is known about
the biogeography of COVID-19, neither from empirical studies nor
from mathematical models. This is astonishing, as one prominent
characteristic of the pandemic is the huge variation in the num-
ber of cases that have been reported from different countries of the
world. As of April 2020, some countries—the epicenters of the pan-
demic—were already badly affected by the pandemic, while others
at the same time had just confirmed the first few cases. This geo-
graphic variation in COVID-19 prevalence might be explained by
several arguments: a first obvious possibility would be that the vari-
ation is caused by the idiosyncratic circumstances of the individual
countries which differ largely in their geography and population
size, but also in the way they are combatting the disease. Alterna-
tively, parts of the variation could simply be due to reporting errors,
reflecting disparate national testing regimes, with countries such as
China, Japan, South Korea, or Germany having high testing rates,
in contrast to other countries with much poorer testing. Here, we
argue, however, that a dominant part of this variation may be a
direct consequence of the dynamics of the spreading process itself.
Thereby, the epidemic prevalence in a country should be directly
correlated to the arrival time of the disease: countries that were
invaded very early by the virus have accumulated many cases in
time, while countries with a late invasion naturally still have smaller
prevalence.

To test this hypothesis, we use empirical data14 to compute
the country-level distribution, P, of confirmed COVID-19 cases,
n, at the end of March 2020 worldwide and find that it is closely
approximated by a truncated power-law,

P(n) ∼ n−µ, 1 ≤ n ≤ nmax (1)

over five orders of magnitude.
Power-law distributions characterize a large range of phenom-

ena in natural, economic, and social systems, which is known as
Zipf- or Pareto law.11,27,29,39 Examples range from the number of
species in biological taxa,46 the number of cities with a given size,47

the number of different words in human language,47 the frequency
of earthquakes,18 the distribution of wealth,32 the number of scien-
tific citations,34,36 the step length in animal search patterns,44 and the
popularity of chess openings.7 Our study shows that epidemic preva-
lence, at least in the emerging stage of a pandemic, is another system
that falls into this class, suggesting that the spatial distribution of
COVID-19 case numbers is a fractal.9

The appearance of a power-law distribution often points to
the nature of the underlying processes. It might, for example, be
an indication that the system operates close to criticality,3,29 and it
might hint at the presence of a multiplicative stochastic process with
certain boundaries7,39 or a rich-get-richer process.4,38

Here, we provide a conceptual dual-scale model that explains
the emergence of the power-law distribution by the “superposition”
of two concurrent processes: large-scale spread of the virus between
countries and small-scale snowballing of case numbers within each
country. Assuming exponential growth on both scales, the criti-
cal exponent is simply determined by the ratio of large-scale to
small-scale growth rates. We confirm this theory in numerical simu-
lations in a simple meta-population model, describing the epidemic
spread in a network of interconnected countries. By combining real
world data, modeling, and numerical simulations, we make the case
that the distribution of epidemic prevalence, and possibly that of
spreading processes in general, might follow universal rules.

II. RESULTS

A. Power-law distribution in empirical data

Our research builds on the COVID-19 data repository oper-
ated by the Johns Hopkins University Center for Systems Science
and Engineering (JHU CSSE).14 The database contains informa-
tion about the daily number of confirmed COVID-19 cases and
confirmed deaths in various countries worldwide.

Using these data, we computed the distribution PC(n) of con-
firmed cases and the distribution PD(n) of confirmed deaths at a
given date (see Appendix A).

The country-level prevalence distribution on March 22, 2020
is shown in Figs. 1(a) and 1(b). On that day, 168 countries were
invaded by the coronavirus and 86 countries already had reported
fatalities. The number of confirmed cases varied between 81 435
cases in China (followed by 59 138 cases in Italy) and 1 case in 16
countries. The number of confirmed deaths varied between 5476 in
Italy (followed by 3274 in China) and one or zero deaths in many
countries.

Figures 1(a) and 1(b) clearly demonstrate that the frequency P
of countries that have a certain number n of COVID-19 cases follows
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FIG. 1. Power-law scaling in the distribution of confirmed COVID-19 cases. Left column: Estimated probability Px(n) (blue lines and circles) for a country to have a certain
number n of (a) confirmed cases (x = C) and (b) confirmed deaths (x = D) on March 22, 2020. Right column: The same for the 2160 US counties that have been invaded by
the coronavirus on March 31, 2020. Histogram bins are spaced equally on a logarithmic axis and only bins with a positive number of entries are shown. Black solid lines show

straight-line fits with slope µ, indicated in the figure labels. Insets: Cumulative fraction C(n) =
∑

N

m=n+1 P(m) of countries, or counties, with case number m > n. Solid lines

show the cumulative distribution equation (A2) of a truncated power-law distribution with critical exponent µ and cut-off value (a) nmax = 1 × 105, (b) nmax = 1.5 × 104, (c)
nmax = 7 × 104, and (d) nmax = 3 × 103.

a broad, long-tailed distribution that in very good approximation
can be described by a power-law, spanning five orders of magnitude
for the confirmed number of cases and four orders of magnitude for
the confirmed number of deaths.

To illustrate the robustness of our hypothesis to spatial scale, in
Figs. 1(c) and 1(d), we depict the same analysis for the distribution
of confirmed COVID-19 cases in US counties on March 31, 2020.
On this day, 2160 counties were invaded by the virus and 514 coun-
ties reported at least on death. Epidemic prevalence varied between
43 119 confirmed cases and 922 confirmed deaths in New York City
and one confirmed case in 455 counties and one confirmed death

in 253 counties. Again, we find that the distribution of confirmed
cases follows a power-law over several orders of magnitude. Thus,
although the two datasets differ greatly in spatial scale and resolu-
tion [168 invaded countries in Figs. 1(a) and 1(b) vs 2160 invaded
US counties in Figs. 1(c) and 1(d)], we obtain very similar patterns
of prevalence distribution.

A crude estimation of the critical exponent can be obtained
by measuring the slope of a regression line through the data on a
double-logarithmic plot. Applying this method to the country-level
distribution [Figs. 1(a) and 1(b)], we obtain a value of µC = 1.18
(slope of the distribution of confirmed cases) and µD = 1.35
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(confirmed deaths). For the US-county distribution [Figs. 1(c)
and 1(d)], we obtain somewhat larger slopes of µC = 1.58 and
µD = 1.83.

A more accurate estimation of the critical exponent is provided
by a maximum likelihood estimation (see Appendix A). Applying
this approach to the country-level COVID-19 distribution yields
critical exponents of µ̂C = 1.14 ± 0.01 and µ̂D = 1.50 ± 0.05. For
the US-county distribution, we obtain the value µ̂C = 1.49 ± 0.01
and µ̂D = 2.31 ± 0.06. These exponents slightly deviate from those
obtained from the regression analysis, but are still in the same
ballpark.

Given an unbounded power-law distribution P(n), the cumu-
lative distribution function C(n) =

∫∞
n

P(n′)dn′ should also follow
a power-law C(n) ∼ n1−µ. As shown in the insets in Fig. 1, this is
not the case for the distribution of COVID-19 cases, for which the
cumulative fraction C(n) =

∑N
m=n+1 P(m) of countries, or counties,

with case number m > n do not really follow a straight line in a
double logarithmic plot. Instead, they are better described by the
cumulative distribution function Eq. (A2) of a truncated power-law,
that is, a power-law distribution with an upper bound nmax for the
number of cases, Eq. (1) (see Appendix A and Fig. 5). This indication
for the presence of a truncated power-law distribution also conforms
with our theoretical analysis below.

However, we note that although the shape of the empirically
obtained C(n) overall follows the curve of a truncated power-law
distribution, there is a considerable wavering around the theoretical
curve (compare blue circles and black lines in Fig. 1 insets). Thus, a
rigorous hypothesis testing with Monte Carlo simulations,11,13 which
does not take disturbances due to additional irregularities (e.g., het-
erogeneities in country sizes or containment measures) fully into
account, will always reject the hypothesis of a perfect truncated
power-law as the true underlying distribution.

The presence of a power-law distribution means that global
COVID-19 prevalence patterns are characterized by a small num-
ber of countries with huge epidemic prevalence (the long tail of the
distribution) and a large number of countries that are (yet) barely
affected by the disease. In between these two extremes, there is a
smooth transition and this transition is scale-free, that is, the ampli-
fication in the number of countries (or counties) with decreasing
number of cases is the same at all scales. In general, the obtained crit-
ical exponents are rather small. While for most natural power-law
distributions critical exponents are around µ ≈ 2, here we estimate
exponents that are clearly below two, µ < 2, indicating a very broad
distribution for which in the absence of an upper bound, the mean
value diverges.

B. Temporal development during the pandemic

spread

While the present analysis considers the distribution of case
numbers at a temporal snapshot, in reality the pandemic is a
dynamic process successively invading countries worldwide. In
Fig. 2, we investigate the temporal development of the COVID-19
distribution. The figure shows that the country-level distribution of
confirmed cases is formed already within a few weeks from the start
of the outbreak and remains roughly stationary over the considered
time interval of 75 days. A closer inspection (see inset in Fig. 2(b)

FIG. 2. Temporal development of the COVID-19 pandemic. (a) Evolution of the
distribution of confirmed cases per country. The same as Fig. 1(a), but for six
different time instances separated by 2 weeks (see figure legend) during the pan-
demic. The inset shows the cumulative number of countries N · C(n), where N is
the total number of countries with confirmed cases at that date. (b) Distribution of
arrival times. The histogram shows the number of countries that were invaded by
the virus on a certain day between January 22, 2020 and April 5, 2020 (blue bars).
Further shown is an exponentially increasing function, exp(st) (black dashed line)
with growth rate s = 0.03 d−1, obtained by a least square fit to the histogram
during the first 61 days. The inset shows the critical exponents µ̂C(t) (black)
and µ̂D(t) (blue, only shown from February 16, the first days with at least five
confirmed deaths), estimated by maximizing the log-likelihood function equation
(A4), as a function of time. The vertical red line indicates March 22, the date of
the distribution shown in Figs. 1(a) and 1(b).

reveals that the critical exponents in fact are not constant, but in
general are decreasing functions of time, indicating that the case
distributions tend to broaden over the course of the pandemic.

Figure 2(b) further investigates the spatial spread of COVID-
19 across countries worldwide more systematically. The figure plots
the number of countries that were invaded by the coronavirus (i.e.,
having the first confirmed COVID-19 case) at a particular day in the
time span from January 22 to April 5, 2020. On January 22, the first
entry in the database, six countries (China, Japan, South Korea, Tai-
wan, Thailand, US) were already invaded by the virus. From this day,
within roughly two months, the pandemic spread to nearly every
country in the world.

Interestingly, the invasion speed was not constant. Instead,
Fig. 2(b) clearly indicates two broad modes in the arrival time
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distribution. A first group of countries was invaded by the disease
in the end of January. In the first three weeks of February nearly
no new arrivals were reported. Starting from February 24, a second
wave of invasions appeared which lasted until the end of March,
after which the number of new arrivals began to fall again, probably
reflecting the fact that the pandemic had reached basically all coun-
tries of the world. As of April 5, a total 185 countries were invaded
by the coronavirus.

There are several possible reasons why the disease arrival is not
more evenly distributed. One explanation for the bimodal shape is
related to the lockdown of airline transportation in China in the end
of January 2020. According to this hypothesis, after the first pan-
demic bubble in January, the further spread of the pandemic came
to a temporary standstill with the onset of travel restrictions, only to
resurface in a second wave, starting end of February. Alternatively,
it may be that many arrivals of the virus in countries all over the
world simply went undetected during the first weeks of February and
were detected only later with the increasing awareness and increased
testing. This hypothesis is corroborated by the observation that end
of February is also the time when the first PCR based tests became
available. In general, the strong irregularity in the arrival time dis-
tribution points to the high level of stochasticity of the worldwide
spreading process.

C. Mechanistic explanation of the power-law

distribution

Figure 2 would suggest that the temporal development of the
pandemic is characterized by two complementary processes: the suc-
cessive invasion of more and more countries and the increasing
number of cases within each affected country. Here, we argue that
the emergence of the power-law distribution could be related to the
concurrent “superposition” of these two processes. Thereby, on a
large geographic scale, the pandemic is driven by the spread of the
virus in the network of interconnected countries. On a small scale,
case numbers are snowballing within each country, once it has been
invaded, thereby further increasing the epidemic imbalance due to
different arrival times between countries.

In the simplest approximation, at the begin of the pandemic
both of these processes developed exponentially in time. A straight-
forward calculation shows that the combination of the two exponen-
tial processes generically yields a truncated power-law distribution
in the number of cases in countries: Consider an epidemic out-
break that started (the first case reported in a country) at time t = 0.
We are interested in the case distribution at time t > 0. Let us first
assume that at this day, the probability distribution for a country
to have been invaded by the virus at some former time τ grows
exponential in τ with spreading rate s,

P(τ ) ∼ esτ , 0 ≤ τ ≤ t. (2)

This exponential growth in the geographic distribution of the
pandemic would be the expectation if one modeled the spread in a
network where nodes are countries (neglecting saturation when the
pandemic has reached most countries). Note that the distribution
is truncated from two sides because arrivals of the disease can only
have occurred after the start of the pandemic, τ ≥ 0, and in the past,
τ ≤ t.

Second, we assume that in each country, the number of con-
firmed cases has grown exponentially with the time since invasion
t − τ with growth rate r (neglecting containment measures and
saturation after the epidemic peak),

n(t) ∼ er(t−τ). (3)

Combining these two equations, the probability distribution of
confirmed cases P(n) can be calculated as29

P(n) = P(τ )

∣

∣

∣

∣

dτ

dn

∣

∣

∣

∣

∼ esτ

e−rτ
∼ n−(1+s/r), with 1 ≤ n ≤ nmax, (4)

which is a truncated power-law with critical exponent,

µ = 1 + s

r
. (5)

Thus, the critical exponent is simply determined by the ratio of
large-scale to small-scale growth rates. In the symmetric case that
both growth rates are identical, s = r, we would expect a power-
law with µ = 2. In the limiting case that the large-scaling spreading
process is linear in time, s = 0, we obtain a border-line distribu-
tion with critical exponent µ = 1. Note that from the truncation
of τ in the arrival time distribution, Eq. (2), the admissible range
of case numbers in the power-law distribution Eq. (4) necessarily
is restricted between the lower bound n = 1 (the epidemic preva-
lence in a newly invaded country) and the cut-off value nmax ∼ ert

(the epidemic prevalence at time t in the country with the first con-
firmed case)—justifying the observation of a truncated power-law in
the empirical data as shown in Fig. 1.

Obviously, this simple theory far from accurately describes a
real-word pandemic. First of all, the theory is valid only in the
initial phase of the pandemic, while both geographical spread and
within-country epidemic growth are still exponential. As soon as
saturation processes set in, the derivation of the power-law breaks
down. Next, as shown in Fig. 2(b), the arrival time distribution dur-
ing the COVID-19 pandemic is not exponential, as discussed above.
In gross oversimplification, we may nevertheless fit an exponential
function P(t) ∼ est through the data, yielding an “average” spreading
rate of s = 0.03 d−1 [black dashed line in Fig. 2(b)]. Finally, epi-
demic growth rates during the COVID-19 pandemic have not been
identical in all countries (even in the initial stages). They have also
not remained constant in time, but in most countries have fallen
in the course of the epidemic. Furthermore, most countries were
invaded multiple times, leading to different epidemic foci within
countries. Neglecting all these observations, for the sake of argu-
ment, let us assume an average doubling time of case numbers of
T1/2 = 3.5 d in all countries, yielding an exponential growth rate
of r = log(2)/T1/2 = 0.2 d−1 and a maximal case number of nmax =
e0.2∗60 = 1.6 × 105 after 60 days. Then, according to our simple the-
ory equation (5), we would expect a critical exponent of µ = 1 +
0.03/0.2 ≈ 1.15, in rather good agreement to the fitted exponents in
Fig. 1.

D. Results from a meta-population model

To test the theory of Sec. II C, we developed a dual-scale meta-
population model (see Appendix B). The first level describes the
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large-scale stochastic spread of the virus in a network of N intercon-
nected countries. The second level describes the small-scale increase
in case numbers within a country; it is started in each country from
the time point of invasion by the virus and follows a simple deter-
ministic SIR-dynamics. The motivation for this model design was
not to predict the worldwide spread of COVID-19, but rather to
quantitatively test the emergence of heterogeneous case distribu-
tions in a conceptual model framework that incorporates the ideas
from Sec. II C.

Figure 3 shows a typical model outcome. The large-scale
spreading process is captured in the arrival time distribution, which
exhibits a unimodal dependency on time [Fig. 3(d)]. Correspond-
ingly, the number of invaded countries grows stochastically and
roughly follows a sigmoidal shape. In accord to our theory, Eq. (2),
this arrival time distribution starts to grow exponentially in the
build-up phase of the pandemic. The highest invasion rates occur
after about 50 days, while after a simulation time of 80 days, 196 out
of the N = 200 countries are already invaded by the virus.

FIG. 3. Power-law scaling in the meta-population model. (a) and (b) Same as Fig. 1, but for model simulations after transient of 62 days. Shown is the estimated probability
P(n) (blue lines and circles) with straight-line fits (black lines) for the simulated cases (a) and deaths (b). Insets show the cumulative fraction C(n) of countries (blue circles)
and the cumulative distribution function (black lines) of a truncated power-law distribution with cut-off values (a) nmax = 5 × 106 and (b) nmax = 5 × 104. (c) and (d) Same
as Fig. 2, showing the spatial spread in the meta-population model. (c) Evolution of the distribution of cases as in (a), but for five different time instances separated by 15
days (see figure legend). (d) Histogram of arrival times, showing the number of countries that were invaded on a certain day. Simulation time: 80 days. The black dashed line
shows an exponentially increasing function, exp(st) with spreading rate s = 0.037 d−1, obtained by a least square fit to the data during the first 62 days. The inset shows the
time dependence of the critical exponents µ̂C(t) (black) and µ̂D(t) (blue) for the distribution of the number of cases and deaths, estimated by maximizing the log-likelihood
function equation (A4) for all days where at least five cases were reported. The red vertical line indicates day 62, the time of the distribution in (a) and (b). See Appendix B
for model description and parameter values.
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Combining the large-scale and small-scale model components
allows us to simulate the epidemic prevalence in each country as a
function of time. Figures 3(a) and 3(b) show the resulting distribu-
tion of cases and deaths after a simulation time of 62 days [vertical
red line in Fig. 3(d)]. Again, the distributions are well character-
ized by a truncated power-law. Comparison with Fig. 1 shows that
the model is able to describe the characteristics of the empirical
distribution of COVID-19 cases rather well. The log-likelihood esti-
mation of the critical exponents yields values of µ̂C = 1.18 ± 0.01
and µ̂D = 1.40 ± 0.06. These exponents can be compared to our
theory equation (5). From Fig. 3(d), we estimate a spatial spread-
ing rate of s = 0.037 d−1 in the build-up phase of the pandemic. The
initial growth rate of infected in the SIR-model equals r = 0.23 d−1

(see Appendix B). Thus, according to Eq. (5), we would expect a crit-
ical exponent of µ = 1 + 0.037/0.23 = 0.16, in good agreement to
the estimated value from the numerical simulation.

We want to note that the nearly ideal power-law scaling in the
case distribution holds only in the initial phase of the pandemic
and is lost when the spatial spreading starts to saturate. This can
be seen in the simulated case distribution P(n) for different time
instances [Fig. 3(c)]. While P(n) remains roughly stationary for the
first 50–60 days of the simulation, a first plateau begins to emerge at
the left end of the distribution for larger times. This plateau reflects
the fact that when the number of newly invaded countries is reduced,
these countries with just a few cases are missing in the left end of
the case distribution [reminiscent to the behavior exhibited in the
empirical case distribution, Fig. 2(a)]. Additionally, the estimated
critical exponents are decaying in time [inset of Fig. 3(d)], simi-
lar to that of the empirical data [inset of Fig. 2(b)]. Thus, the first
sign that the outbreak has reached most countries in the network is
the reduction in the scaling range and a simultaneous broadening
of the case distribution. Eventually, in the limit of large time, when
the epidemic has come to an end in every country, scaling is lost
and the distribution of cases must converge toward a delta function
P(n) = δ(n − fNpop), with f the fraction of susceptible out of a pop-
ulation of Npop individuals in a country that will be infected (or it
would approach the country size distribution in a meta-population
with heterogeneously distributed country sizes). Interestingly, in
our numerical simulations, we still obtained power-law distribution
when the contact rate β was set to a large value, so that the dynamics
within a country rapidly reach a stationary state. In this case, with
increasing β (and thus increasing initial epidemic growth rates r),
the critical exponents tended to µ → 1.

III. DISCUSSION

It is well known from the literature11,29 that caution is in order
when trying to identify power-law distributions in real data and, in
particular, that a straight line in a double-logarithmic plot does not
suffice to prove the existence of a power-law distribution. For this
reason, the aim of this study is not to prove that the COVID-19
case distribution is a perfect power-law, an undertaking that would
require sophisticated statistical analysis and a much larger sam-
ple size.11 We also do not intend to rule out other likely candidate
distributions (e.g., log-normal or stretched exponential distribu-
tions). Instead, our claim is merely to demonstrate that the empirical
data are highly consistent with the hypothesis that the number of

reported cases are taken from a truncated power-law distribution of
the form equation (1).

Nevertheless, the scaling relations in the distributions shown
in Fig. 1 are remarkably constant over the whole range of case
numbers, stretching several orders of magnitude with no obvi-
ous signs of saturation for either the range of small or large case
numbers. One might argue that the bend in the cumulative dis-
tribution function is a sign that the growth in some countries
(e.g., China, Korea) had already become sub-exponential. How-
ever, this is contradicted by the observation that a similar bend
is also exhibited by the cumulative distribution function obtained
from the meta-population model (Fig. 3). Thus, the most likely
explanation is that the case distribution follows a truncated power-
law (see also Fig. 5), suggesting the hypothesis that the spatial
distribution of COVID-19 cases is a fractal.9 This is further cor-
roborated by our simple theory, which provides a mechanistic
explanation for why we would expect a truncated power-law in the
first place.

Our finding of power-law distributions in the number of
reported cases has important consequences for epidemiology. Most
notably, the small values of the estimated critical power-law expo-
nents are related to the strong inequality of case numbers that was
frequently observed all over the world in the initial phase of the
COVID-19 outbreak. Following a power-law distribution means
that this pattern prevails even as numbers grew and the scale of
infection expanded globally. In particular, during the course of the
pandemic, most cases were reported to have occurred in a few coun-
tries, sometimes even a single country—the so-called epicenters of
the pandemic. The distribution of cases within countries followed a
similar pattern. Often COVID-19 was peaking in a few localized foci
(local regions or cities), while other parts of the country at the same
time had experienced only a moderate number of cases. Our theory
provides a mechanistic explanation why this might have been the
case.

A graphical representation for the inequality of a distribution is
given by the Lorenz curve,29 which in the case of the COVID-19 case
distribution is a plot of the fraction of the total number of confirmed
cases in dependence of the fraction of the most affected countries.
This is shown in Fig. 4 for the number of confirmed COVID-19 cases
and confirmed deaths on March 22, 2020. The Lorenz curve shows
that on this day, 95.7% of confirmed cases and 97.6% of the con-
firmed deaths had been reported in the 20% most affected countries
(while the top 5% most affected countries had accumulated 82.3%
of all confirmed cases and 84.4% of all confirmed deaths). With
81 435 out of 336 953 confirmed cases on that day, China alone had
accumulated a fraction of 24% of all cases. The two most affected
countries, China and Italy, together had accumulated a fraction of
41% of the worldwide reported cases.

This inequality can also be measured by the Gini-coefficient
G,17 which ranges between G = 0 for perfect equality, i.e., all coun-
tries having the same number of cases, and G = 1, corresponding
to maximal inequality, where all cases appear in a single coun-
try. For the distribution of confirmed COVID-19 cases on March
22 [Figs. 1(a) and 1(b)], we obtain a Gini-coefficient of G = 0.92
and for the number of confirmed death of G = 0.94. These large
values are a direct consequence of the small critical exponents of
the estimated power-law distributions. In fact, for an unbounded
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FIG. 4. Lorenz curves, depicting the inequality in the distribution of confirmed
COVID-19 cases. The plots show the fraction of the number of confirmed cases
(a) and of the number of confirmed deaths (b) as a function of the fraction of
most affected countries on March 22, 2020 (compared to Fig. 1). This inequality
corresponds to a Gini-coefficient of G = 0.92 for the distribution of confirmed
cases and of G = 0.94 for the number of confirmed deaths.

power-law distribution with µ < 2, one would theoretically expect
a Gini-coefficient of G = 1.29

The emergence of power-law distributions with a small criti-
cal exponent and the associated inequality of the distribution, with
Gini coefficients close to one is also observed in the developed
meta-population model. Consequently, also in the model case num-
bers are mostly concentrated in a few countries. In the simulations,
these epicenters of the pandemic, i.e., the countries with most cases,
are always the countries in which the diseases originated or which
were first invaded by the virus. In other words, the prevalence rank
order among countries remains unchanged during the course of
the pandemic. This is akin to the “rich-get-richer process” or “first-
mover-advantage,”30,38 a well-studied process to generate power-law
distributions. In the real COVID-19 pandemic, this was not the case.
During the beginning of the pandemic, most cases were observed
in China, later the “leading role” changed next to Italy and finally
to the USA. This reflects different mitigation strategies and circum-
stances in different countries, a factor that is not considered in the
simple model. Nevertheless, despite these changes in the rank order,
the distribution of cases in the empirical data was always closely
represented by a power-law.

We would like to remark that the available database only pro-
vides information on the reported COVID-19 cases in each country.
In all likelihood, the real number of cases will be much larger. Not
much is known about the reporting rates, but first estimates indi-
cate that a substantial fraction (possible 86%) of infections might
go undetected.24 Reporting rates probably vary strongly between
countries and may change in time with the awareness of national
health institutions and available testing capabilities. Further uncer-
tainties arise because the criteria by which a person is classified as
active case (and even more so for being classified as recovered) vary
between countries and not uncommonly have been modified during
the course of the pandemic within a country.

Remarkably, we obtained power-law distributions in the abso-
lute number of cases in each country. At first guess, one might have
expected such scaling only after case numbers have been normalized
by population sizes. Our preliminary investigations show that such
normalized case numbers become even more unequally distributed,

FIG. 5. Robustness of the algorithm for estimating parameters of a truncated
power-law. The same as Fig. 1 but for 200 random numbers ni that were gen-
erated from a truncated power-law distribution with µ = 1.2 and cut-off value
nmax = 1 × 105. The estimated distribution roughly follows a straight line on the
double-logarithmic plot with equally spaced bins. Note that even though only 200
random numbers were drawn, the estimated probabilities vary overmany orders of
magnitude (which is numerically possible since in order to compute the probability
distribution, the histogram counts are divided by the variable bin sizes). Log--
likelihood estimation of critical exponent (Appendix A) yields µ̂ = 1.21 ± 0.01
in good agreement with the actually used exponent. In contrast, the estimator for
an unbound power-law, Eq. (A6), yields µ̂ = 1.28 ± 0.01, strongly overestimat-
ing the true exponent. The estimation by a regression line, yieldingµ = 1.24, also
is slightly too large. The inset shows that the cumulative fraction is well described
by the cumulative distribution function C(n) of a truncated power-law with critical
exponent µ̂ and nmax = 8.4 × 104, the maximal ni value of the sample.

with even smaller estimated values of the critical exponent, and the
distributed values do not line up any more so well on a straight
line on a double-logarithmic plot. Thus, “folding” the distribution
of population sizes over the COVID-19 case distribution does not
flatten, but rather tends to further increase, the inequality of the
resulting distribution. This indicates that absolute (non-normalized)
case numbers may be the natural variables to describe the patterns of
the pandemic in its initial stage. In all likelihood, the role of country
sizes and population numbers will become increasingly important
with the further spread of the pandemic.

We have shown that a simple conceptual model yields an accu-
rate description of the COVID-19 prevalence distribution in the
initial phase of the pandemic. This is remarkable because many
important epidemiological aspects of the spreading process are
not captured by the model. Most notably, the model takes into
account neither variability in country sizes, population numbers,
testing rates, heterogeneity of intra- and inter-country connectivity,
nor the corresponding changes due to social distancing, lock-down
measures, closing of airline connections and shut-down of borders.

These simplifications leave much room for future investi-
gations and model improvements. Obvious model improvements
would be to consider a meta-population with heterogeneously dis-
tributed country sizes or to make the initial number of infected
individuals a random number, as would be a better description of
what happened in many countries.
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One basic assumption of the developed model is the separa-
tion of the pandemic into two spatial scales, the large-spatial spread
over a rather small number (N < 200) of interconnected countries
and the small-scale growth within a population of much larger size
(N = 5 × 107). This separation obviously is somewhat arbitrary. For
the virus, countries are, of course, quasi-arbitrary entities. There-
fore, it would be important to check whether both the data analysis
(Fig. 1) and the mathematical model are robust to arbitrarily sub-
dividing or lumping countries. The very similar scaling observed
among US counties [Figs. 1(c) and (d)] lends credence to the model’s
generality. Similarly, one can readily ascertain that the model result
is not an artifact of artificial lumping. Suppose a virus that is spread-
ing in an all-to-all, or randomly coupled, network of a number of
N · Npop individuals. If we would artificially subdivide individuals
into a small number N of classes (or countries), at the time point
when the disease has spread to all countries, within each country, we
would still have only a few cases (of the order of N � Npop). Thus,
the assumed simultaneous spread on both spatial scales requires a
real physical separation in the network structure. It would be an
interesting perspective for future research to study the spread in
multi-scale hierarchies or in more realistic models of interconnected
societies.

One important model application would be the simulation of
interim COVID-19 lockdown or containment measures, as were
introduced in many countries in the world in March and April 2020.
Such measures might inhibit the increase of case numbers within
local regions (the small-scale part of our theory) but they would not
necessarily suppress also the large-scale diffusion of infections across
regions. Thus, under the guise of suppressed case numbers during
the mitigation period, there could be a dangerous “invisible” homog-
enization in the spatial distribution of the virus. This would have
tremendous implications in a scenario where the measures are sud-
denly lifted in many places. In this case, our theory would predict the
emergence of a very different case number distribution than shown
in Fig. 1. Instead of the previous power-law distribution resurfac-
ing, the most likely situation would be the synchronous initiation
of increasing in case numbers everywhere. Thus, situations as they
appeared only in the epicenters during the beginning phase of the
pandemic could be the rule in most parts where mitigation mea-
sures are lifted. In this sense, the long tail of the case distribution,
characterized by the many regions with only mild epidemic preva-
lence, that was observed in the initial phase of the pandemic, could
create a false sense of security.

Finally, we would like to remark that the model’s strong
simplicity is at the same time a strength: being rather generic,
it should be applicable to very different systems, to describe the
spread of commodities as a process with two spatial scales. The
fact that the distribution of COVID-19 resembles a model where
only the initial infection “counts” reflects the intrinsic difficulty
in containing epidemics at global and local scales when unilat-
eral measures (e.g., travel bans and lockdowns) are impractical or
non-enforceable, i.e., where other countries or regions will step up
and continue the spread. Thus, assessing how a well simple dual-
scale model predicts the early spread of epidemics, despite the huge
contrasts between countries, could help identify critical temporal
and spatial scales of response in which to mitigate future epidemic
threats.
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APPENDIX A: ESTIMATING PARAMETERS OF A

TRUNCATED POWER-LAW DISTRIBUTION

Assume a truncated power-law (or Pareto) distribution of the
random variable n

P(n) = Cn−µ, 1 ≤ n ≤ nmax, (A1)

with upper bound nmax. Normalization
∫

P(n)dn = 1 yields
C = (1 − µ)/(n(1−µ)

max − 1). The cumulative distribution function
reads

C(n) =
∫ nmax

n

P(n′) dn′ = n(1−µ) − n(1−µ)
max

1 − n
(1−µ)
max

. (A2)

In the limit nmax → ∞ (a power-law distribution without
upper bound), the cumulative distribution function also follows a
power-law C(n) ∼ n1−µ.

A synthetic sample of the distribution (A1) can be obtained by
the formula

ni =
[

1 − ui(1 − n(1−µ)
max )

]
1

1−µ , (A3)

where ui are random numbers taken from a uniform distribution in
the range [0, 1].

The inverse problem is to estimate the parameters of the distri-
bution given a random sample n(1, n2, . . . , nN) of N data points. The
log-likelihood for the distribution Eq. (A1) can be defined as1,13,45

L(µ) =
N
∑

i=1

ln P(ni) = N ln

(

1 − µ

n
(1−µ)
max − 1

)

− µ

N
∑

i=1

ln ni. (A4)

Then, an estimator for the cut-off value is obtained by n̂max

= max(ni)
1 and an estimator µ̂ for the critical exponent is obtained

by maximizing L(µ), yielding a standard error13

σ = 1√
N







1

(µ̂ − 1)
2

− n̂(µ̂−1)
max ln2 n̂max
(

1 − n̂
(µ̂−1)
max

)2







− 1
2

. (A5)

In these expressions, the “hat” means that we refer to an
estimated value. The maximization of L(µ) must be computed
numerically (here, we use Brent’s method from the Julia package
Optim.jl28).

In the limit of an unbounded power-law distribution
nmax → ∞, the maximization can be calculated analytically,
yielding29

µ̂ = 1 + N

(

∑

i

ln ni

)−1

. (A6)

To estimate the distribution P(n) of case numbers that vary
over many orders of magnitude, we used a histogram with loga-
rithmic binning. That is, we placed a discrete number of bins, k, at
positions of integer powers of two nk = 2k (i.e., 1, 2, 4, 8, 16, etc.)
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and for each bin counted the number Hk of countries (or US coun-
ties) that under the day of investigation reported a number n of cases
that was falling into this bin (nk ≤ n < nk+1). To obtain the proba-
bility distribution, the resulting histogram counts were divided by
the varying bin sizes P(nk) = cHk/(nk+1 − nk) and the normaliza-
tion constant c fixed so that

∑

k P(nk) = 1. For visualization, we
plotted the distribution on double-logarithmic axes, excluding bins
without entries.

To confirm the robustness of the histogram estimation, we also
used an alternative algorithm, where we first computed the his-
togram of log-transformed case numbers ν = log(n) using equally
spaced bins, which, after normalization, yielded the distribution
P̃(ν). Next, we used the back-transform P(n) = P̃(ν)/n to obtain the
probability distribution P(n) of non-logarithmic case numbers. This
procedure also yields a distribution with bins that are equally spaced
on a logarithmic scale and the resulting distributions, shown in Fig. 7
in Appendix C, are very similar to that from the logarithmic binning
method described above. We have checked that the resulting dis-
tribution is largely independent to the choice and number of used
histogram bins and other numerical parameters.

We also computed the cumulative fraction C(n) =
∑N

m=n+1

P(m) of countries with case number m > n. This was obtained by
taking a rank-plot of case numbers and inverting axes, i.e., sort-
ing the array of case numbers in descending order and plotting for
each country the rank as a function of the sorted case number on
double-logarithmic axes.29

APPENDIX B: THE METAPOPULATION MODEL

To describe the spatiotemporal evolution of epidemic preva-
lence during the course of a pandemic, we developed a conceptual

FIG. 6. Simulation of the SIR-model (B1) within a country. The plot shows the
numerically obtained values of the total number of cases C (black), the number of
susceptible S (green), and the number of recovered R (blue) on the left axis, as
well as the number of infected I (red) and deaths D (magenta) and the right axis
as a function of time. For the used initial values of S(0) = 5 × 107, I(0) = 1, and
R(0) = D(0) = 0, the epidemic peak is reached after 77 days. See methods for
parameter values.

dual-scale meta-population model. The large-scale model compo-
nent allows us to simulate the spread of the virus in a network of
N interconnected countries (with average network degree k). The
state of a country is given as a Boolean value, being either invaded
by the virus or non-invaded. The model starts with a single invaded
country. The geographic spread runs in discrete time, each step cor-
responding to one day of the time-continuous small-scale model. In
each time step, a non-invaded country becomes infected by neigh-
boring invaded countries in the network with the transmission
probability p. As soon as a country has been invaded by the virus
in this process, the small-scale model for this country is initiated.

This large-scale model corresponds to the well-known SI-
epidemic spread on a network.31 The number of invaded coun-
tries grows stochastically and roughly follows a sigmoidal shape.
Neglecting saturation effects (that is, in the initial phase of
the pandemic) and assuming a homogeneous degree distribu-
tion, the expected number of invaded countries X(t) grows
exponentially in time, X(t) = X0 exp(st), with X0 = 1 and expo-
nent s = kp. Then, the rate of newly invaded countries is
given by Ẋ = s exp(st) and thus also the probability distribu-
tion P(τ ) for a country to have been invaded at some for-
mer time τ ≤ t, Eq. (2), grows exponentially, P(τ ) = c exp(st).
Here, the normalization factor is given by c = s

N
exp(st)/(exp

(st) − 1), which is determined by the condition that the time integral
∫ t

0
P(τ ) dτ = X(t)/N.

In our simulation, parameter values were taken as follows:
number of countries N = 200, degree k = 199 (fully connected
network), and invasion probability p = 6 × 10−4.

The small-scale model is time-continuous and deterministi-
cally describes the epidemic dynamics within a country. The model
determines the time course of susceptible S, infected I, recovered R,
and dead D from a standard SIR-model,22,23

Ṡ = −β
S

Npop

I, İ = β
S

Npop

I − γ I, Ṙ = (1 − m)γ I, Ḋ = mγ I. (B1)

Here, Npop is the constant population size in the country, β is the
contact rate, 1/γ the infectious period, and m the case fatality rate.
The total number of cases is determined as C = I + R + D. In the
small-scale model, countries are simulated independently from each
other and are only coupled by the unique invasion event for each
country, which starts the epidemic growth in that country with
initial values S(0) = 5 × 107, I(0) = 1 and R(0) = D(0) = 0. All
infection state variables in a country are zero before invasion by
the virus, I = R = D = 0. The resulting well-known SIR-dynamics
in a single country is shown in Fig. 6. With the chosen parameter-
ization, it takes roughly 80 days until the epidemic peak is reached.
After this time, the assumption of an exponential increase, Eq. (3),
breaks down. Parameter values were taken as follows: country pop-
ulation size Npop = 5 × 107, case fatality rate m = 0.01, infectious
period 1/γ = 6d, and contact rate β = 0.4d−1. This yields a growth
rate r = β − γ = 0.23d−1, corresponding to a doubling time of T1,2

= log(2)/r = 3d and a basic reproduction number R0 = β/γ = 2.4.

APPENDIX C: SUPPLEMENTARY FIGURE

Alternative calculation of the distribution of COVID-19 case
numbers in countries worldwide and counties in the US.
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FIG. 7. Alternative calculation of the distribution of COVID-19 case numbers in countries worldwide and counties in the US. Same as Fig. 1, but for the alternative histogram
algorithm, using a histogram of log-transformed case numbers (see Appendix A). Left column: Estimated probability Px(n) (blue lines and circles) for a country to have a
certain number n of (a) confirmed cases (x = C) and (b) confirmed deaths (x = D) on March 22, 2020. Right column: The same for the 2160 US counties that have been

invaded by the coronavirus on March 31, 2020, for (c) confirmed cases and (d) confirmed deaths. Insets: Cumulative fraction C(n) =
∑

N

m=n+1 P(m) of countries, or counties,
with case number m > n.

DATA AVAILABILITY

Code for data analysis and numerical simulations was writ-
ten in Julia, Ref. 6, available in https://github.com/berndblasius/
Covid19. The differential equations were solved with the package
DifferentialEquations.jl, available in https://github.com/
berndblasius/Covid19, Ref. 35 and the maximization of the log-
likelihood function with package Optim.jl, available in https://github.
com/berndblasius/Covid19, Ref. 28. The used data are available in
https://github.com/CSSEGISandData.
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